Abstract

Abstract GRACE and GRACE Follow-On (GRACE-FO) mission data are utilized to assess mass flux derived from the North American Regional Reanalysis (NARR) and the NLDAS-2 Noah land surface model via multiple water balance formulations. Water balances are computed for 18 medium size basins in North America at the USGS Watershed Boundary Dataset HU2 level over the span of the GRACE and GRACE-FO missions (2002–21). Performance of model-derived mass flux is presented in the context of statistical agreement to changes in terrestrial water storage (ΔTWS) derived from Center for Space Research (CSR) GRACE RL06 mass concentrations (mascons), and GRACE and NARR uncertainty is estimated against comparable datasets. The land surface water balance method utilizing NLDAS-2 Noah consistently outperforms the total column method utilizing NARR, which is likely due to enhanced precipitation forcing and an updated Noah model version used in NLDAS-2. The surface approach to the calculation of atmospheric moisture flux divergence is carried through the presented analyses and is demonstrated to be comparable in performance to the more common volume approach. Mass balance methodology, basin characteristics, and ΔTWS signal characteristics are assessed to quantify effects on model performance and while factors such as basin size, basin average topography gradient, and ΔTWS annual amplitude are shown to have a measurable effect on model performance, no single factor exhibited a dominant or consistent effect. Drought conditions are shown to have a significant temporally localized effect on model-derived mass flux accuracy, with NARR being particularly susceptible to this effect. Significance Statement Measurements of Earth’s gravity field from the GRACE and GRACE-FO satellite missions are utilized to create estimates of water storage changes in 18 North American river basins that are compared to changes in water storage calculated from an atmospheric model reanalysis (NARR) and a land surface model (NLDAS-2 Noah). The resulting comparison demonstrates that certain basin characteristics can have a slight effect on model accuracy, while climatic conditions such as drought can have a major impact on model accuracy. This work provides useful quantification of when and where modeled water transport loses accuracy, which is integral to our understanding of the present and future distribution of this crucial resource and the natural processes that affect it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call