Abstract
ABSTRACTThe thermo-fluidic transport characteristics of the fly ash–water slurry flow in a straight horizontal pipe are predicted by deploying two different multiphase modeling strategies, viz. the mixture and the Eulerian multiphase models. Comparisons between the two model predictions in terms of the pressure drop and heat transfer coefficient are done along with the comparisons between the single (water) and the two phase system (slurry). Spherical fly ash particles, with diameter of 13 µm for an average inflow velocity ranging from 1 to 5 m/s and particle concentrations within 0–40% by volume for each velocity are considered as the dispersed phase carried by the carrier phase water. Significant differences between the two model predictions can be observed both from the qualitative and quantitative perspectives. This finally leads to the appropriate choice of the multiphase model for predicting the thermo-fluidic transport characteristics in slurry flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.