Abstract
The recently cloned uncoupling protein homolog UCP3 is expressed primarily in muscle and therefore may play a significant role in the regulation of energy expenditure and body weight. However, investigation into the regulation of uncoupling protein has been hampered by the inability to assess its activity in vivo. In this report, we demonstrate the use of a noninvasive NMR technique to assess mitochondrial energy uncoupling in skeletal muscle of awake rats by combining (13)C NMR to measure rates of mitochondrial substrate oxidation with (31)P NMR to assess unidirectional ATP synthesis flux. These combined (31)P/(13)C NMR measurements were performed in control, 10-day triiodo-l-thyronine (T(3))-treated (model of increased UCP3 expression), and acute 2,4-dinitrophenol (DNP)-treated (protonophore and mitochondrial uncoupler) rats. UCP3 mRNA and protein levels increased 8.1-fold (+/- 1.1) and 2.8-fold (+/- 0.8), respectively, in the T(3)-treated vs. control rat gastrocnemius muscle. (13)C NMR measurements of tricarboxylic acid cycle flux as an index of mitochondrial substrate oxidation were 61 +/- 21, 148 +/- 25, and 310 +/- 48 nmol/g per min in the control, T(3), and DNP groups, respectively. (31)P NMR saturation transfer measurements of unidirectional ATP synthesis flux were 83 +/- 14, 84 +/- 14, and 73 +/- 7 nmol/g per s in the control, T(3), and DNP groups, respectively. Together, these flux measurements, when normalized to the control group, suggest that acute administration of DNP (mitochondrial uncoupler) and chronic administration of T(3) decrease energy coupling by approximately 80% and approximately 60%, respectively, and that the latter treatment correlates with an increase in UCP3 mRNA and protein expression. This NMR approach could prove useful for exploring the regulation of uncoupling protein activity in vivo and elucidating its role in energy metabolism and obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.