Abstract
Among renewable energy sources, the electrical generation from micro-wind turbines has not yet disclosed its huge potential especially in urban settings. Increasing the spread of micro-wind turbines not only promotes the decentralized generation of energy, but also helps tackle fuel poverty and to achieve reductions in the emission of greenhouse gases (GHGs). This work proposes an innovative methodology to exploit wind flow fields, calculated by means of computational fluid dynamic (CFD) codes in urban environments, within the geographical information system (GIS) platform. In this way, the platform of users is amplified, even non-specialist users, that can utilize wind data to evaluate the potential production of electricity using micro-wind turbines. A pilot study was conducted for assessing the applicability of the approach in a Sicilian city. The results of this case study show the energy yield produced from a building-mounted wind turbine (BUWT). The developed methodology permits to enrich the information usually stored in the GIS platform allowing to supply useful information about suitable sites where micro-wind energy plants can be installed and to assess the production of renewable energy in the urban settings.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Energy and Environmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.