Abstract

Endothelial dysfunction is an important factor in many cardiovascular diseases, and is commonly associated with impaired endothelium-mediated vasodilatation. Information about the mechanisms behind this dysfunction has come largely from animal studies or, in humans, through invasive techniques that are not specific to one vascular bed. We have developed protocols to assess endothelial function non-invasively in the cutaneous microcirculation by measuring blood flow responses to four receptor-specific vasoactive compounds. Cumulative doses of acetylcholine, methacholine, bradykinin and substance P were administered iontophoretically to the forearm skin of healthy volunteers on two to three occasions. Dose-dependent increases in skin microvascular blood flow in response to these drugs were measured with laser Doppler imaging. Vascular responses to acetylcholine and methacholine were reasonably consistent, with coefficients of variation of approx. 17%. The coefficients of variation for bradykinin and substance P were much poorer, as high as 70% for some doses. This might partly be a consequence of the more unpredictable effects of histamine release in the vasoactive behaviour of these two agonists. Although it might be advantageous to find other agonists with which to test the function of different receptor pathways, we have shown that just acetylcholine and methacholine can currently be used with iontophoresis to allow sensitive and reproducible assessment of endothelial function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.