Abstract
In this paper we introduce a Microfluidic Fault Simulator, MFS, which uses a novel method of fault modeling and injection, the Fault Block, a generic and low abstraction fault modeling technique. This technique has been utilized over a wide range of fault conditions, in this paper we present a trapped bubble condition. In conjunction with injecting fault conditions, we can apply test methods. Two methods proving sensitive to microfluidic faults are; impedance spectroscopy and Levich electro-chemical sensors, illustrated here by a diffusional "Y" channel mixing system case study. Data from the MFS is analyzed using a Neyman-Pearson probabilistic approach, providing information on each sensor's test capability. Overall fault coverage for a given test is determined. This approach allows the analysis of fault coverage offered by functional-test orientated sensors to be compared to alternative approaches, which potentially offer increased coverage at lower cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.