Abstract

It is evident from the past studies that dust fallout is a severe concern due to its impact to urban air quality and public health. This study mainly examines the spatial and seasonal variation of dustfall at ambient levels and chemical characterization of its insoluble fraction for Kharagpur Town, India. Dustfall samples were collected monthly for 1year (July 2014 to June 2015) from four sampling sites. The results showed that the maximum dustfall deposition is found during summer (March to June) and in the range of 2.01 ± 0.36 to 15.74 ± 3.83tonkm-2month-1, and minimum deposition is during monsoon season (July to October) in the range of 0.42 ± 0.72 to 7.38 ± 5.8tonkm-2month-1. Selected metals likeSc, V, Cr, Co, Ni, Zn, Y, Zr, Ce, Hf, and Pb were analyzed using the high-resolution inductively coupled mass spectrometer (HR-ICP-MS) technique, and the contamination level of heavy metals was assessed using the geoaccumulation index (Igeo) and enrichment factor (EF). To estimate the sources for the metallic contaminants, principal component analysis (PCA) was conducted. The US EPA health risk assessment model was applied to determine the hazard index and hazard quotient values. The results show the significant level of enrichment for Pb (EF = 41.79) and Cr (EF = 4.39). The Igeo values point out moderate contamination by Pb (Igeo = 2.01) and Cr (Igeo = 1.6) in Kharagpur Town. This study suggests that in the context of noncancer risk of heavy metals as determined by the hazard index (HI) and hazard quotient (HQ) values, ingestion is the main source of exposure to dust in adults and children followed by dermal contact. Considering the inhalation route, carcinogenic risk level of Cr, Co, and Ni for adults and children is lower than the EPA's safe limit (10-6 to 10-4), indicating that cancer risk of these metals due to exposure to dustfall in Kharagpur is negligible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.