Abstract

While there are several areas containing shallow coral habitats in the Gulf of Mexico (GOM), the availability of suitable reef habitat at mesophotic depths (~30–150 m) along the continental shelf margin suggests the potential for ecologically connected coral populations across hundreds of kilometers in the northwest (NW) GOM. The NW GOM includes a relatively high proportion of mesophotic habitats, including salt diapirs in Flower Garden Banks National Marine Sanctuary (FGBNMS), Bright Bank, and McGrail Bank, the latter two being Habitat Areas of Particular Concern (HAPCs). In response to a proposed expansion plan for the sanctuary boundaries to include additional mesophotic banks in the NW GOM, we investigated the genetic connectivity of the depth-generalist coral Montastraea cavernosa, a ubiquitous member of scleractinian communities throughout the Tropical Western Atlantic. M. cavernosa populations in the NW GOM demonstrated strong connectivity with relatively high levels of gene flow and no significant genetic differentiation occurring over banks up to 120 km apart. Historical migration models based on genetic data predicted panmixia of M. cavernosa across the NW GOM. The comparisons between genetic and biophysical models (see Garavelli et al., 2018; associate manuscript) highlight not only the importance of incorporating multiple assessments of connectivity into management schemes, but also the potentially stochastic nature of oceanographic patterns in the NW GOM and their effect on migration estimates among coral habitats. These trends indicate that M. cavernosa populations have remained well-connected in the NW GOM and that coral populations on each bank have likely been receiving larval recruitment through time. Thus, M. cavernosa populations should be managed as a combined unit within the NW GOM, which supports the proposal to expand the NMS boundaries to include mesophotic habitats beyond West and East FGB.

Highlights

  • Understanding population dynamics in marine environments is especially challenging without prior knowledge of important habitats and larval characteristics (Palumbi, 2003; Cowen and Sponaugle, 2009; Weersing and Toonen, 2009)

  • Patterns of gene flow and migration across generations can be estimated from population genetic data, allowing inferences to be made in regards to historical and current population dynamics (Palumbi, 2003)

  • Patterns of genetic variation across banks included in this study support that M. cavernosa are acting as a single population in the NW Gulf of Mexico (GOM)

Read more

Summary

Introduction

Understanding population dynamics in marine environments is especially challenging without prior knowledge of important habitats and larval characteristics (Palumbi, 2003; Cowen and Sponaugle, 2009; Weersing and Toonen, 2009). Identification and characterization of all possible habitats and knowledge of larval biology in situ is limited if not entirely undescribed for many sessile species in marine environments (Carr et al, 2003; Cowen et al, 2006; Jones et al, 2009). Conservation strategies to protect the biodiversity and persistence of coral reef ecosystems worldwide require knowledge of how populations interact and persist (Palumbi, 2003; Cowen et al, 2006; Cowen and Sponaugle, 2009). As widely-dispersed ecosystem engineers, corals are useful candidate species to describe system-level population dynamics (Nunes et al, 2011)

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call