Abstract

In this study, we assessed fouling in a membrane bioreactor (MBR) with the addition of suspended aluminum nitride (AlN) nanoparticles (NPs). Three parallel laboratory-scale submerged MBRs were operated with 0, 10, and 50 mg AlN NPs/L for over 70 days. The results showed that the addition of suspended AlN NPs did not significantly affect pollutant biodegradation; there was only a slight decrease in NH4+-N removal. Furthermore, the membrane's permeability was increased with effective fouling mitigation by the addition of a high amount of suspended AlN NPs. This was because the suspended AlN NPs decreased the content of polysaccharides in both the extracellular polymeric substances and soluble microbial products, and decreased the sludge floc size. However, the AlN NPs also promoted pore-blocking, particularly standard blocking, which enhanced irreversible fouling. Additionally, owing to the larger ionic radius and higher electronegativity, the AlN NPs inhibited the accumulation of framework components (SiO2). Therefore, suspended AlN NPs resulted in a thinner cake layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call