Abstract

Assessment of mass-induced sea level (MISL) variability in the Tropical Indian Ocean (TIO) was studied using observations from the Gravity Recovery and Climate Experiment (GRACE) during 2003–2017 in conjunction with the steric effects in the sea level anomaly as measured by satellite altimeters. Two steric sea levels were estimated from the ocean model analysis and Argo gridded temperature and salinity fields. These datasets were consistent with each other and to the altimeter measured sea level records. They exhibited a coherent seasonal cycle with unique spatial patterns of amplitude maxima associated with annual and semi-annual harmonics. Steric component remained as a major contributor to the sea level variability at all the time scales. Addition of the GRACE measured MISL to the steric sea level improved the estimation of sea level (as measured by satellite altimeter) over most part of the TIO except over the northern part of the Arabian Sea. It was observed that the MISL had a significant contribution to the sea level variability at intra-seasonal and seasonal time scales and a minor contribution to the sea level inter-annual variability. During all the El Nino years, sea level underwent a large fluctuation coherent to the steric component. A linear barotropic vortex conservation model driven by ocean surface winds explained a major part of the observed MISL high-frequency variability in the Equatorial and southern TIO, and overestimated the observation in the northern TIO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call