Abstract

The northern Gulf of Mexico is facing high rates of wetland loss due to subsidence and sea level–rise, which has encouraged the application of various wetland restoration techniques. Marsh terracing is a restoration technique that has been implemented since the early 1990 s in Texas and Louisiana, yet few studies have been conducted to evaluate its effectiveness. Marsh terraces are segmented berms of soil built in coastal ponds that were once vegetated marshes. Marsh terracing is hypothesized to dissipate wind waves, encourage marsh expansion, and reduce shoreline erosion. This study (1) assessed the effectiveness of the most common terrace shapes (linear, chevron, and square) and spacing (100, 110, and 120 m) at reducing significant wave height (Hs), (2) assessed the effectiveness of alternative terrace designs for reducing Hs during different wind conditions, and 3) estimated the construction costs of alternative terrace designs. The Simulating WAves Nearshore (SWAN) model was used to simulate wind–driven waves in ponds with real and hypothetical terrace designs. Results revealed that: (1) The chevron shape provided the greatest reduction in Hs during all wind conditions, reducing Hs by up to 54%. (2) Hs reduction was not affected by terrace spacings. (3) Based on wave attenuation, the chevron design with a 120 m terrace spacing provided the optimal outcome with an estimated construction cost/ha of $6332 in a 250,000 m2 site compared to the terrace shapes and spacings evaluated in this study. This study will help coastal managers design marsh terraces to address wetland erosion in the Gulf of Mexico and other coastal areas facing similar environmental problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.