Abstract

Summary A matrix model of the life cycle of Salsola australis was constructed, based on population ecology data collected from the district of Lake Grace, Western Australia. The model was used to assess potential control strategies for this summer annual weed within the Western Australian broad acre grain cropping system. The population growth rate (λ) of S. australis in the absence of weed control strategies was 1.49 and was virtually unaffected by the dormant seedbank. However, λ increased to 8.21 if it was assumed that a constant number of seed immigrated into the area in question from neighbouring populations of S. australis, through farm-scale seed dispersal. As a result, effective weed management depended on reducing seed dispersal. The model determined that burning all senesced, mobile plants in late autumn, combined with herbicide control of the largest cohorts of S. australis in summer and autumn, reduced population growth rate to 0.79. This control strategy resulted in a 66.1% chance of the population becoming extinct over 25 years. Management strategies are proposed based on the results of the models and further research is required to validate their effectiveness and practicality in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.