Abstract

Wastewater reuse is becoming increasingly important for supplementing drinking water supply needs and/or to reduce costs in many communities around the world. However, wastewater reuse can result in a potential transmission route for infectious agents. Therefore, the occurrence of Cryptosporidium was assessed in a treatment plant geared for the production of drinking water from wastewater effluent and the results were compared to those on an existing typical drinking water treatment plant operated by Waternet, the water cycle company of Amsterdam, The Netherlands, and its surrounding areas. The assessment was done using Monte-Carlo simulation and probability density functions to determine the occurrence of Cryptosporidium in raw surface water and wastewater effluent and the removal in different treatment steps. From the research conducted, it was concluded that under normal conditions, drinking water that meets Dutch drinking water quality standards could also be produced from treated wastewater effluent. However, additional redundancy should be built in to meet the standards under extreme operating conditions.

Highlights

  • Wastewater reuse is increasingly becoming important for supplementing drinking water supply needs and/or to reduce costs in many communities around the world such as WindhoekNamibia (Van der Merwe, 2006), Emahlaleni-South Africa (Gunther, 2006) and Wulpen-Belgium (Van Houtte and Verbauwhede, 2008)

  • Wastewater reuse can result in a potential transmission route for infectious agents that are associated with human wastes and/or the presence of priority pollutants, endocrine disrupting compounds, pharmaceutically active compounds, or other unregulated trace compounds (Drewes et al, 2003)

  • It was concluded that in the normal situation both alternatives complied with Dutch water quality legislation

Read more

Summary

Introduction

Wastewater reuse is increasingly becoming important for supplementing drinking water supply needs and/or to reduce costs in many communities around the world such as WindhoekNamibia (Van der Merwe, 2006), Emahlaleni-South Africa (Gunther, 2006) and Wulpen-Belgium (Van Houtte and Verbauwhede, 2008). Wastewater reuse as an option becomes necessary and possible because of the increased environmental constraints, such as droughts and water scarcity, and the fact that wastewater discharge quality regulations have become stricter leading to a better water quality. Wastewater reuse practices have become technically more feasible (Casani et al, 2005). Wastewater reuse can result in a potential transmission route for infectious agents that are associated with human wastes and/or the presence of priority pollutants, endocrine disrupting compounds, pharmaceutically active compounds, or other unregulated trace compounds (Drewes et al, 2003). Reclamation plants must be designed such that the desired effluent quality is consistently achieved. This should include built-in redundancy as a back-up when there is a problem (Cooper, 1991)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.