Abstract

Laser powder bed fusion process is a versatile metal additive manufacturing process. Although significant progress has been made so far, there is still limited large-scale adoption of this technique by the industry. The main problems are repeatability and lack of proper knowledge. In this work, an innovative and non-destructive testing methodology, based on flat-top cylinder indentation, was used to define the mechanical properties of laser powder bed fused aluminium alloy to highlight any variations induced by the combination of process parameters, for global characterization, and by the building direction, for local characterization. Results show similar or improved global mechanical properties of the laser powder bed fused specimens when compared to traditional die-casted ones. Indentation tests highlight a local dependence of properties along the building direction in favor of the upper part of the samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.