Abstract

In the present study, the lipid profile from the fat body and eggs of Rhipicephalus microplus was evaluated after exposure of engorged females to (E)-cinnamaldehyde and α-bisabolol, substances which have acaricide potential according to the literature. Engorged females collected from artificially infested cattle were immersed in a concentration of 10.0 mg/mL of each substance. Dissection of the female fat bodies was performed at different times (72 h and 120 h), for subsequent lipid extraction. In addition, on the fifth day of oviposition, were collected 50.0 ml50.0 mL aliquots of the egg mass of each treatment to perform the same lipid extraction procedure. To assess the lipid profiles, the samples were submitted to the thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GCMS) analysis. Furthermore, an in silico analysis was performed using PASS online® software to predict the possible molecular targets of (E)-cinnamaldehyde and α-bisabolol. As result, the main lipids identified from the fat body were triacylglycerides, fatty acids, and cholesterol, whereas, triacylglycerides (TAG), fatty acids (FA), and cholesterol (CHO) and cholesterol esters (CHOE), were identified in the eggs. The results also showed a significant increase (p < 0.05) of CHO in the fat body in the group exposed to (E)-cinnamaldehyde at 72 h (0.12 μg/fat body) and 120 h (0.46 μg/fat body), in the eggs from females treated with this same substance, there was a significant reduction (p < 0.05) in the amount of CHO (0.21 μg), compared to the water control group (0.45 μg). In the GCMS technique, 5 chemical classes were found, and variations were observed between these substances, mainly hydrocarbons and steroids, in the different groups, and (E)-cinnamaldehyde promoted the greatest changes. From the predictions of the in silico study, 38 and 20 targets were selected, respectively, which are mainly related to alterations in lipid metabolism, immune system and nervous system. This study provides the first report of changes in lipid metabolism of R. microplus exposed to (E)-cinnamaldehyde and α-bisabolol, as well as presenting possible activity on the molecular targets of these substances, expanding knowledge for the potential use of these compounds in the development of botanical acaricides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call