Abstract

Soot production in turbulent flames is an extremely intermittent phenomenon since it is the result of specific thermochemical conditions occasionally occurring in space and time. In realistic configurations such as the swirling flames used in gas-turbines, the presence of large-scale flow motions can additionally affect soot formation processes, leading to even more pronounced intermittency. Classically, the validation of numerical simulations is performed by comparing time-averaged results with experimental data of the phenomenon under investigation. This comparison can be considered as rigorous only if a statistically converged numerical representation is obtained. In case of sporadic events such as intermittent soot formation in turbulent flames, this means to perform the simulation over thousands of milliseconds of physical time, which can have extremely high CPU demands when performing Large Eddy Simulation (LES). In this work, a possible strategy to overcome this issue is proposed based on the use of high-speed measurements and numerically synthesized signals from LES. To illustrate the approach, numerical and experimental soot light scattering signals are considered here by looking at the model aero-engine combustor developed at DLR for the study of pressurized swirled sooting flames. The light scattering signal is numerically synthesized from an LES. Experimental high-speed measurements are used to statistically account for the high temporal and spatial variability of soot when considering time intervals similar to what is today achievable with LES. The feasibility of this approach is finally demonstrated by comparing numerical results to the ensemble of possible soot production states observed experimentally in the DLR burner allowing to eventually validate the present LES results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call