Abstract

Left ventricular volume and function can be computed from gated SPECT myocardial perfusion imaging using Emory Cardiac Toolbox (ECT) or Gated SPECT Quantification (GS-Quant). The aim of this study was to compare both programs with respect to their practical application, stability and precision on heart-models as well as in clinical use. The volumes of five cardiac models were calculated by ECT and GS-Quant. 48 patients (13 female, 35 male) underwent a one day stress-rest protocol and gated SPECT. From these 96 gated SPECT images, left ventricular ejection fraction (LVEF), end-diastolic volume (EDV) and end-systolic volume (ESV) were estimated by ECT and GS-Quant. For 42 patients LVEF was also determined by echocardiography. For the cardiac models the computed volumes showed high correlation with the model-volumes as well as high correlation between ECT and GS-Quant (r > or = 0.99). Both programs underestimated the volume by approximately 20-30% independent of the ventricle-size. Calculating LVEF, EDV and ESV, GS-Quant and ECT correlated well to each other and to the LVEF estimated by echocardiography (r > or = 0.86). LVEF values determined with ECT were about 10% higher than values determined with GS-Quant or echocardiography. The incorrect surfaces calculated by the automatic algorithm of GS-Quant for three examinations could not be corrected manually. 34 of the ECT studies were optimized by the operator. GS-Quant and ECT are two reliable programs in estimating LVEF. Both seem to underestimate the cardiac volume. In practical application GS-Quant was faster and easier to use. ECT allows the user to define the contour of the ventricle and thus is less susceptible to artifacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.