Abstract
This study aims at determining the leachate contamination of the groundwater resource at selected domestic wastes disposal sites in Minna, Nigeria for a population about 2.1 million, to locate aquifers and hydraulically active structures by tracing the movement of contaminant plumes and seepages in ground at the selected locations. Resistivity data was collected using a terrameter (SAS4000) while the Vertical Electrical Sounding (VES) mode was deployed using the Schlumberger array to enable investigation of the depth penetration of contaminant plume. The induced polarization (IP) was used to determine the level of contaminant plume. The VES readings measured at 50m intervals along each profile line and 100m inter-profile distance, with a maximum current electrode separation of 200m and potential electrode separation of 30m. There are equal numbers of three and four layers observed on the profile, which has ten VES points. The first layer has a resistivity range between 48.4 Ωm & 428 Ωm and thickness between 0.65m & 3.83m. However, isolated resistivity area such as VES; N5 (287Ωm), N6 (295Ωm) and N8 (428Ωm) also suggested sandy/soil rich in organic matter (humus material/soil). The second and third layer is the fractured basement which has very low resistivity values for most VES (N1–48.5Ωm, N2–38.7Ωm, N3–41.6Ωm, N5–61.5Ωm, N7–49.6Ωm, N8–60.7Ωm, N9–108Ωm and N10–97.6Ωm) that indicated leachate presence and contamination, which results from increased ionic concentration. In conclusion, it was discovered that the study area had high conductivity values for some of the locations using the resitivity determination method. This indicated the presence of water within the study area. It was also concluded that the IP which indicated high concentration of metals caused the lowering of the resisitivity values at some of the locations, thus indicating the presence of metals within the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Solid Waste Technology and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.