Abstract

Lake eutrophication is characterized by a variety of indicators, including nitrogen and phosphorus concentrations, chemical oxygen demand, chlorophyll levels, and water transparency. In this study, a multidimensional similarity cloud model (MSCM) is combined with a random weighting method to reduce the impacts of random errors in eutrophication monitoring data and the fuzziness of lake eutrophication definitions on the consistency and reliability of lake eutrophication evaluations. Measured samples are assigned to lake eutrophication levels based on the cosine of the angle between the cloud digital characteristics vectors of each sample and those of each eutrophication grade. To field test this method, the eutrophication level of Nansi Lake in Shandong Province was evaluated based on monitoring data collected in 2009–2016. Results demonstrate that, in 2009 and in 2011–2015, the upper lake of Nansi Lake exhibited moderate eutrophication while the lower lake exhibited mild eutrophication. In 2010, 2016, elevated concentrations of total nitrogen and total phosphorus led to an increase in the eutrophication level of the lower lake, matching that of the upper lake. Based on the results of these field tests, we conclude that the MSCM presented in this study provides a more flexible and effective method for evaluating lake eutrophication data than the existing multidimensional normal cloud model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.