Abstract

Real-time precise Global Navigation Satellite System (GNSS) satellite orbit and clock products are the prerequisite of real-time GNSS-based applications. With the modernization of Global Positioning System (GPS) constellation and construction of other GNSS constellations, the number of GNSS satellites transmitting multi-frequency signals is increasing rapidly. While the benefit of multi-frequency to Precise Point Positioning (PPP) and Precise Clock Estimation (PCE) has been evaluated by many researchers, the impact of multi-frequency on orbit and clock estimation is still limited, especially in real-time mode. Different from the dual-frequency model, the Inter-Frequency Clock Bias (IFCB) must be treated carefully in the triple-frequency model. In this contribution, the triple-frequency model for real-time GPS satellite orbit and clock estimation is derived and the influence of L5 frequency observations on real-time GPS satellite orbit and clock are analyzed. With observation data from globally distributed stations spanning January 1 to 14 of 2018, real-time GPS orbit and clock are estimated with both dual-frequency and triple-frequency observations. Numerical experiments indicate that, compared to the International GNSS Service (IGS) final orbit, the L5 frequency observations improve the consistency of the normal component with about 0.2 cm, however lead to a decrease of consistency in the radial component with about 0.6 cm; the influence on the tangential direction varies with different number of stations. The potential reason for this phenomenon may partly be attributed to the absence of accurate antenna information for L5 frequency. However, due to the tight constraint of dynamic force model on orbit, the overall differences for each component is less than 1.0 cm, which means the contribution of the third frequency observation on the orbit is limited.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call