Abstract

Isotope exchange methodology is invaluable to determine the solution-solid-phase distribution (Kd) and isotopically exchangeable concentration (Evalue) of elements in soils and sediments. This work examined the use of species-specific stable isotope exchange techniques to determine the Kd and E value of selenium (Se), as selenite (SeO3) and selenate (SeO4), in nine soils and sediments varying in concentration and source of Se. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) was used to quantify the isotope (e.g., 76Se, 78Se, 80Se, and 82Se) concentrations of the soluble Se oxyanions. The two Se oxyanions were detected in the solution phase of all of the soils and sediments. However, upon spiking the suspensions with stable isotope-labeled 78SeO3 and 76SeO4, it was observed that isotope self-exchange was insignificant to the derivation of Se oxyanion Kd and E values during 24 h (and up to 120 h in four of the samples). These results demonstrate that valid determinations of the Evalue of Se necessitate that the Se oxyanions are speciated in solution. This is clearly evident for these soils and sediments where it was observed that the Evalues of SeO3 and SeO4 represented, respectively, 5-97% and 3-95% of the total Se E value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call