Abstract

In mammalian spermatozoa, intracellular calcium plays a major role in sperm functions like motility and capacitation. Cryopreservation-induced modifications to sperm membrane result in an influx of intracellular calcium affecting calcium-dependent intracellular signalling pathways. Intracellular calcium activates adenyl cyclase to produce cAMP that activates phospholipase A(2) (PLA(2) ) and phospholipase C (PLC) generating lysophosphatidyl choline, 1,2-diacylglycerol (DAG) and IP(3) , acting as intracellular secondary messengers required for sperm capacitation. Present study was designed to determine levels of intracellular calcium, cAMP and DAG in fresh and frozen-thawed buffalo spermatozoa cryopreserved in the presence and absence of taurine or trehalose. A total number of nine ejaculates from three randomly chosen buffalo bulls were cryopreserved in Tris-based egg yolk extender and thawed in warm water at 37°C. The cAMP was measured by enzyme immuno assay, and intracellular calcium was quantified using fluorescent dye FURA 2-AM. Total lipid was extracted from spermatozoa, and DAG was estimated using thin layer chromatography followed by spectrophotometric analysis. Intracellular calcium, cAMP and DAG levels in spermatozoa were significantly (p < 0.01) increased following cryopreservation as compared to fresh ejaculate. Addition of taurine or trehalose to the freezing medium significantly decreased (p < 0.01) the levels of intracellular calcium and cAMP in frozen-thawed spermatozoa. 1,2-diacylglycerol content was also decreased significantly (p < 0.01) in spermatozoa cryopreserved in presence of additives. Moreover, significant (p < 0.01) improvement in post-thaw motility, viability and membrane integrity of spermatozoa on addition of taurine or trehalose clearly indicated the reduced level of capacitation-like changes in buffalo spermatozoa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.