Abstract
In this work, we report benchmark spin-orbit calculations for a representative set of electronic states including π → π*, n → π*, and π → σ* and Rydberg states of organic molecules. Auxiliary many-electron wave functions (AMEWs) have been generated from left and/or right eigenvectors of Casida's non-Hermitian time-dependent density functional theory (TDDFT) equation. The newly developed Spoiler program has been used to evaluate spin-orbit matrix elements (SOMEs) from full linear response TDDFT and TDDFT calculations in Tamm-Dancoff approximation (TDA) in conjunction with the well-known B3-LYP and PBE0 hybrid functionals. The data thus obtained have been benchmarked against SOMEs from multireference configuration interaction calculations recently performed in our group. It turns out that the TDDFT SOMEs are rather insensitive with regard to the choice of eigenvectors (left, right, or mixed) as long as the AMEWs are normalized. To avoid problematic excitation energies of low-lying triplet excited states, the use of the TDA is recommended. With regard to SOMEs, a slight preference is found for the PBE0 functional.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.