Abstract

Nonlinear excitation regime two-line atomic fluorescence (NTLAF) is a laser-based thermometry technique that has application in turbulent flames with soot. However, no assessment of the various interferences from soot or its precursors in flames with high soot loadings on the technique is available. To examine these issues, both on- and off-wavelength NTLAF measurements are presented and compared for laminar nonpremixed ethylene-air flames. Laser-induced incandescence (LII) measurements were used to determine the corresponding soot concentration and location in the investigated flames. The measurements indicate that interferences, such as spurious scattering and laser-induced incandescence from soot, are not significant for the present set of flame conditions. However, interferences from soot precursors, predominantly condensed species (CS) and perhaps polycyclic aromatic hydrocarbons (PAH), can be significant. Potential detection schemes to correct or circumvent these interference issues are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.