Abstract
In present study, response surface methodology (RSM) based central composite design (CCD) was used to study the interactive effect between two individual soil amendments, sophorolipids (SLs) and pine needle biochar for the phytoremediation of Cd contamination and enzymatic activity of soil. The experimented concentrations of SLs and biochar ranged from 0.5 to 2.6 g/kg and 0.4 to 1.8 %, respectively. The SLs and biochar at the concentration 1.1 g/kg and 1.55 % respectively exhibit the maximum uptake in shoot (125.33 mg/kg) and root (298.27 mg/kg). The results also showed higher R2 (>0.9) for Cd uptake in B. pilosa and R2 (>0.85) for soil enzymatic activity using model generated by CCD of RSM. These results signify the reliability of the model and suggested that this model could be used for the prediction of increased metal uptake by plants. The optimum concentrations of SLs and biochar predicted by the CCD were 1.23 g/kg and 1.55 %, respectively with desirability score of 1 for the uptake of Cd in B. pilosa. The results highlighted that application of these amendments can be a pivotal step in the direction of remediation of heavy metal contamination from soil at larger scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.