Abstract
Abstract In this contribution, the minimum detectable bias (MDB) as well as the statistical tests to identify disturbed observations are introduced for the Gauss-Helmert model. Especially, if the observations are uncorrelated, these quantities will have the same structure as in the Gauss-Markov model, where the redundancy numbers play a key role. All the derivations are based on one-dimensional and additive observation errors respectively offsets which are modeled as additional parameters to be estimated. The formulas to compute these additional parameters with the corresponding variances are also derived in this contribution. The numerical examples of plane fitting and yaw computation show, that the MDB is also in the GHM an appropriate measure to analyze the ability of an implemented least-squares algorithm to detect if outliers are present. Two sources negatively influencing detectability are identified: columns close to the zero vector in the observation matrix B and sub-optimal configuration in the design matrix A. Even if these issues can be excluded, it can be difficult to identify the correct observation as being erroneous. Therefore, the correlation coefficients between two test values are derived and analyzed. Together with the MDB these correlation coefficients are an useful tool to assess the inner reliability – and therefore the detection and identification of outliers – in the Gauss-Helmert model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.