Abstract

The coastal zones of Oman are frequently exposed to tropical cyclones and are expected to be overwhelmed by tsunami waves that originate from marine earthquakes in the Indian Ocean. Inundation of low-lying coastal lands is, hence, inevitable. This study aims to provide a spatial database of the major infrastructure of Oman in relation to their vulnerability to the sea-level rise by tsunamis. This investigation relied on high-resolution elevation data obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM) and eleven infrastructure variables acquired from the Oman National Spatial Data Infrastructure. These variables include: schools, hospitals, banks, mosques, fuel stations, police centers, shopping centers, archeological sites, vegetation cover, roads and built-up areas. A Geographical Information System (GIS) analysis was carried out to delineate and quantify the features along the coast with elevation ranges between 1 and 10 m above the current sea-level. Four tsunami scenarios were investigated depending on historical and expected estimations of tsunami heights of 2, 5, 8 and 10 m at the shoreline from previous studies. Results provide spatial vulnerability maps and databases that could be of the utmost importance to planners and developers. Al-Batinah coastal plain of northern Oman is the most vulnerable location to tsunami hazards due to its low-elevated coastal plain and high concentration of population, infrastructure and services. The study asserts the benefits of GIS as a geospatial analysis tool for risk assessment.

Highlights

  • Risk assessment of natural hazards is a key element in order to perform long-term management for risk reduction along coastal regions

  • The present study aims to utilize Geographical Information System (GIS) tools in order to extract the coastal zones of Oman ranging from 1 to 10 m above the sea-level from the GDEM and to perform spatial analysis to delineate the type and quantity of each infrastructure feature upon each elevation level

  • Digital elevation models are raster dataset provided by the ASTER GDEM, which was released by the U.S National

Read more

Summary

Introduction

Risk assessment of natural hazards is a key element in order to perform long-term management for risk reduction along coastal regions. Data for the slow rise in the sea-level along the coasts of Oman are scant, this change is inferred from global estimates. According to [5], the sea-level rose only 16–21 cm between 1900 and 2016 and it is expected that the sea-level will continue rising until the end of this century by about 70 cm [6]. This slow change could cause flooding along coastal low-lands below 1 m level. [7] reported that the rise of the sea-level by m could overwhelm an area of 6165 km along the Nile Delta coast of Egypt, which occurs below m level. [8] found that 980 km occurs below the 1 m level along the Red Sea coast of Saudi

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.