Abstract

Assessment of indirect emission factors (EF5r) of nitrous oxide (N2O) from agricultural river networks remains challenging, and results are uncertain due to limited data availability. This study compared two methods of assessing EF5r using data from long-term observations at high temporal resolution in a typical agricultural catchment in subtropical central China. The concentration method (method 1) and the Intergovernmental Panel on Climate Change (IPCC) 2006 method (method 2) were employed to evaluate the emission factor. EF5r estimated using method 1 (i.e., EF5r1) was 0.00077 ± 0.00025 (0.00038-0.00097). EF5r calculated using method 2 (i.e., EF5r2) was lower than EF5r1, with a mean value of 0.00004 (0.000015-0.00012). Both EF5r1 and EF5r2 were significantly lower than the IPCC 2006 default value of 0.0025, suggesting that N2O emissions from China and world river networks may be grossly overestimated. A complex N2O production pathway and diffusion mechanism were responsible for the transfer of N2O from the sediment to river water and then to the atmosphere. These findings provide essential data for refining national greenhouse gas inventories and contribute evidence for downward revision of indirect emission factors adopted by the IPCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call