Abstract
Assessing the uncertainty associated with projections of climate change impacts on hydrological processes can be challenging due to multiple sources of uncertainties within and between climate and hydrological models. Here we compare the effects of parameter uncertainty in a hydrological model to inter-model spread from climate projections on hydrological projections of urban streamflow in response to climate change. Four hourly climate model outputs from the RCP8.5 scenario were used as inputs to a distributed hydrologic model (SWMM) calibrated using a Bayesian approach to summarize uncertainty intervals for both model parameters and streamflow predictions. Continuous simulation of 100 years of streamflow generated 90 % prediction intervals for selected exceedance probabilities and flood frequencies prediction intervals from single climate models were compared to the inter climate model spread resulting from a single calibration of the SWMM model. There will be an increase in future flows with exceedance probabilities of 0.5 %-50 % and 2-year floods for all climate projections and all 21st century periods, for the modeled Ohio (USA) watershed. Floods with return periods of ≥ 5 years increase relative to the historical from mid-century (2046–2070) for most climate projections and parameter sets. Across the four climate models, the 90th percentile increase in flows and floods ranges from 17-108 % and 11–63 % respectively. Using multiple calibration parameter sets and climate projections helped capture the most likely hydrologic outcomes, as well as upper and lower bounds of future predictions. For this watershed, hydrological model parameter uncertainty was large relative to inter climate model spread, for near term moderate to high flows and for many flood frequencies. The uncertainty quantification and comparison approach developed here may be helpful in decision-making and design of engineering infrastructure in urban watersheds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.