Abstract

The hydro-mechanical behavior of a pilot underground crude oil storage facility in a granite host rock in China was analyzed using the finite element method (FEM). Characterization of hydro-mechanical behavior of the rock mass was performed using laboratory test, field monitoring, back analysis of field measurements and permeability tests. FEM numerical analyses were used to assess the hydro-mechanical behavior of the granite to study several design and construction issues. The containment properties of the storage facility were investigated without and with the water curtain system. Results showed that the stored oil would leak into rock mass if a water curtain system is not provided, whereas the containment property of the facility will be maintained when a water curtain system is in place. On the influence of cavern excavation sequence, it was indicated that the excavation of the caverns from left to right is a better choice than right to left for the containment property of the facility. On the influence of permeable condition, it was found that the extent of plastic zones, horizontal convergence and crown settlement under permeable condition are lower than those under impermeable condition due to the different stress paths in the rock mass experienced during excavation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call