Abstract

In the present work, the three-dimensional heat and fluid flows around staggered pin-fin arrays are predicted using two hybrid RANS/LES models (an improved delayed detached eddy simulation (IDDES) model and a stress-blended eddy simulation (SBES) model), and one transitional unsteady Reynolds averaged Navier-Stokes (URANS) model, called k-ω SSTLM. The periodic segment geometry with a total of nine pins is considered with a channel height of 2D and a distance of 2.5D between each pin. The corresponding Reynolds number based on the pin diameter and the maximum velocity between pins is 10,000. The two hybrid RANS/LES results show the superior prediction of the mean velocity profiles around the pins, pressure distributions on the pin wall, and Nusselt number distributions. However, the transitional model, k-ω SSTLM, shows large discrepancies except in front of the pins where the flow is not fully developed. The vortical structures are well resolved by the two hybrid RANS/LES models. The SBES model is particularly adept at capturing the 3-D vortex structures after the pins. The effects of the blending function switching between RANS and LES mode of the two hybrid RANS/LES models are also investigated.

Highlights

  • The pin-fin structures utilized in heat exchangers, nuclear reactors, and turbine-bladed cooling systems are a common method to enhance heat transfer efficiently

  • A hybrid large eddy simulation (LES)/RANS model used the same grid as the unsteady Reynolds averaged Navier-Stokes (URANS) simulation, the results showed relatively better agreement than the URANS results with LES and the experimental results

  • (20 million cells), which is shown in Table 1, based on the adopted hybrid RANS/LES models, improved delayed detached eddy simulation (IDDES)

Read more

Summary

Introduction

The pin-fin structures utilized in heat exchangers, nuclear reactors, and turbine-bladed cooling systems are a common method to enhance heat transfer efficiently. Velocity distributions, and Nusselt number distributions were acquired near the cylindrical pins and off the end-walls Their experimental results showed that the turbulence augmentation along the rows were a major parameter for heat transfer in a staggered pin-fin array, and their averaged end-wall Nusselt number had a good agreement with Metzger and Haley’s correlation and Van Fossen’s correlations. Ames et al [5] applied computational fluid dynamics (CFD) simulations with 3-D steady k-ε turbulence model series (standard, renormalization group (RNG), realizable) on the same configuration. They showed the limitations of steady k-ε turbulence models which failed to capture the unsteady vortex shedding in staggered pin-fin arrays

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.