Abstract

Precast hollow-core concrete (HC) slabs are widely used in construction, especially in Nordic countries. The combination of prestressing and low self-weight due to the voids makes it possible to build long-span floors. However, this also makes the floors more sensitive to vibrations from human activities. In this paper, experimental and finite element (FE) analyses of a test HC slab and four in-situ experiments performed in three buildings are presented. For each case, the dynamic assessment is performed using two design guides: SCI P354 (2009) and the Concrete Center (2006). These analyses show that the proposed FE models give accurate results compared to experimental findings and that the Concrete Center design guide gives lower predictions than the SCI P354 guide. In addition, several recommendations can be derived from these studies for the dynamic assessment of HC floors in the design process. The most important is that for some structures, the accelerations calculated using the design guides are significantly higher with an FE model including the considered floor and the surrounding walls than with an FE model including also the lower and higher floors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.