Abstract

High-resolution melting (HRM) analysis is an emerging technology to screen microsatellites for polymorphism. A potential issue surrounding this method is that amplicon sizes for HRM should typically be short (80–100 bp) for highest sensitivity to reveal polymorphism via the presence of two peaks in the curve of the derivative of fluorescence over temperature (dF/dT). In contrast, microsatellite amplicons are typically 100–400 bp. Therefore, we compared HRM analysis melting temperature range (ΔTm) and multiple dF/dT peaks for predicting microsatellite polymorphism. We assessed polymorphism at 27 microsatellite loci, with estimated lengths of 122–321 bp, in Providence Petrel (Pterodroma solandri). We validated HRM assessment using traditional capillary electrophoresis (CE). While 100 % of loci exhibiting multiple peaks in the dF/dT curve were confirmed as polymorphic by CE, 16 % improvement in sensitivity (83 vs. 67 %) was achieved by using ΔTm, and 25 % (92 vs. 67 %) by using ΔTm in addition to multiple dF/dT peaks. We suggest HRM melting temperature range as new predictor of polymorphism that can be used to rapidly assess microsatellites polymorphism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call