Abstract

Synthetic cannabinoid receptor agonists (SCRAs) represent a class of new psychoactive substances that pose great health risks attributed to their wide-ranging and severe adverse effects. Recent evidence has shown that SCRAs with key moieties can confer superagonism, yet this phenomenon is still not well understood. In this study, we developed a structure-activity relationship (SAR) for SCRA superagonism by comparing eight compounds differing by their head moiety (l-valinate vs. l-tert-leucinate), core moiety (indole vs. indazole), and tail moiety (5-fluoropentyl vs. 4-fluorobenzyl) through different modes of bioluminescence resonance energy transfer (BRET). We found that l-tert-leucinate head moiety and indazole core moiety conferred superagonism across multiple Gαi/o proteins and β-arrestin 2. Finally, after generating CB1R mutant constructs, we found that transmembrane 2 (TM2) interactions to the head moiety of tested SCRAs at F170, F177, and H178 are key to eliciting activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.