Abstract
To quantify diffusion and perfusion changes in hepatocellular carcinoma (HCC) induced by yttrium 90 (90Y) radioembolization and to assess the value of dynamic contrast material-enhanced (DCE) MRI and intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) for predicting HCC response. Institutional review board approval was obtained for this prospective study (clinical trial registry NCT01871545). Twenty-four participants with HCC (mean age, 69 years ± 9 [standard deviation], 18 men) underwent multiparametric MRI, including IVIM DWI and gadoxetic acid DCE MRI before (n = 24) and 6 weeks (n = 21) after radioembolization. IVIM DWI and DCE MRI histogram parameters were quantified in HCCs and liver parenchyma. HCC response was assessed by using modified Response Evaluation Criteria in Solid Tumors at 6 weeks and 6-12 months after radioembolization. Logistic regression analysis was used to evaluate the diagnostic performance of baseline MRI and clinical parameters for prediction of response. Twenty-five HCCs were analyzed (mean size, 3.6 cm ± 1.9). Radioembolization resulted in significantly decreased perfusion (DCE MRI arterial flow, P = .002; IVIM pseudodiffusion coefficient [D*], P = .014). Multivariate logistic regression selected combined serum α-fetoprotein and portal flow (F p ) skewness (area under the curve [AUC] = 0.924) and combined D* standard deviation and F p kurtosis (AUC = 0.916) for prediction of objective and complete response at 6 weeks, respectively. Standard deviation of DCE MRI parameter arterial fraction was selected as the optimal predictor for complete response at 6-12 months (AUC = 0.857). Diffusion and perfusion MRI can be used to evaluate the response of HCC to radioembolization. Pretreatment DCE MRI histogram parameters may be useful for radioembolization treatment stratification. Supplemental material is available for this article. © RSNA, 2020.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.