Abstract

To investigate the hemodynamic changes in a precancerous lesion model of hepatocellular carcinoma (HCC). Hemodynamic changes in 18 Wistar rats were studied with non-invasive magnetic resonance (MR) perfusion. The changes induced by diethylnitrosamine (DEN) developed into liver nodular lesions due to hepatic cirrhosis during the progression of carcinogenesis. The MR perfusion data [positive enhancement integral (PEI)] were compared between the nodular lesions corresponding well with MR images and pathology and their surrounding hepatic parenchyma. A total of 46 nodules were located by MR imaging and autopsy, including 22 dysplastic nodules (DN), 9 regenerative nodules (RN), 10 early HCCs and 5 overt HCCs. Among the 22 DNs, 6 were low-grade DN (LGDN) and 16 were high-grade DN (HGDN). The average PEI of RN, DN, early and overt HCC was 205.67 +/- 31.17, 161.94 +/- 20.74, 226.09 +/- 34.83, 491.86 +/- 44.61 respectively, and their liver parenchyma nearby was 204.84 +/- 70.19. Comparison of the blood perfusion index between each RN and its surrounding hepatic parenchyma showed no statistically significant difference (P = 0.06). There were significant differences in DN (P = 0.02). During the late hepatic arterial phase, the perfusion curve in DN declined. DN had an iso-signal intensity at the early hepatic arterial phase and a low signal intensity at the portal venous phase. Of the 10 early HCCs, 4 demonstrated less blood perfusion and 6 displayed minimally increased blood flow compared to the surrounding parenchyma. Five HCCs showed significantly increased blood supply compared to the surrounding parenchyma (P = 0.02). Non-invasive MR perfusion can detect changes in blood supply of precancerous lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.