Abstract

This study aimed to assess the pollution and potential ecological risk of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in the sewage sludge collected from a wastewater treatment plant (WWTP), located in the most industrialized region of Poland (Silesian Voivodeship). The concentrations of heavy metals were determined using inductively coupled plasma optical spectrometry (ICP-OES) and cold vapor atomic absorption spectrometry (CVAAS). The chemical forms (chemical speciation) of heavy metals were determined using the three-step chemical sequential extraction procedure, developed by the Community Bureau of Reference (BCR). To assess the pollution level and potential ecological risk, the following indices were used: Geoaccumulation Index (Igeo), Potential Ecological Risk Factor (ER), Individual Contamination Factor (ICF), Risk Assessment Code (RAC), and Ecological Risk Factor (ERF)—the author’s index. Sludge samples were collected at successive stages of processing. The results revealed that the activated sludge process and sludge thickening have a significant impact on heavy metal distribution, while anaerobic digestion and dehydration decrease their mobility. The most dominant metals in the sludge samples were Zn and Cu. However, the content of heavy metals in sewage sludge did not exceed the permissible standards for agricultural purposes. The concentrations of heavy metals bound to the immobile fractions exhibited higher concentrations, compared to those bound to mobile fractions (except Zn). The values of the total indices indicated that sludge samples were moderately to highly contaminated with Zn, Hg, Cd, Cu, and Pb, of which only Hg, Cd, and Cu posed a potential ecological risk, while according to the speciation indices, sludge samples were moderately to very highly polluted with Zn, Cu, Cd, Cr, and Ni, of which Zn, Ni, and Cd were environmentally hazardous. The obtained results proved that assessment of the pollution level and potential ecological risk of heavy metals in sewage sludge requires knowledge on both their total concentrations and their chemical forms. Such an approach will help prevent secondary pollution of soils with heavy metals, which may influence the reduction of health risks associated with the consumption of plants characterized by a high metal content.

Highlights

  • Sewage sludge is a waste organic material generated in wastewater treatment plants (WWTPs), as a by-product of wastewater treatment [1,2]

  • Knowledge of the total concentrations of heavy metals allows only for the assessment of the degree of sludge pollution and is inconclusive regarding the potential ecological risk that these elements may pose to the environment and living organisms. This is due to the fact that the mobility, bioavailability, and toxicity of heavy metals depend on their speciation forms, which are influenced by their leaching and interactions with different components of natural ecosystems [2,17,18]

  • The Igeo and Ecological Risk Factor (ER) indices refer to total concentrations of heavy metals, while Individual Contamination Factor (ICF), Risk Assessment Code (RAC), and Ecological Risk Factor (ERF) refer to their chemical forms

Read more

Summary

Introduction

Sewage sludge is a waste organic material generated in wastewater treatment plants (WWTPs), as a by-product of wastewater treatment [1,2]. Knowledge of the total concentrations of heavy metals allows only for the assessment of the degree of sludge pollution and is inconclusive regarding the potential ecological risk that these elements may pose to the environment and living organisms. This is due to the fact that the mobility, bioavailability, and toxicity of heavy metals depend on their speciation forms (in this case the chemical), which are influenced by their leaching and interactions with different components of natural ecosystems [2,17,18]. The aims of this study were: (1) to determine the total concentrations of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in sewage sludge at different processing stages; (2) to investigate the chemical forms of heavy metals in sewage sludge by using the BCR sequential extraction procedure; and (3) to assess the pollution level and potential ecological risk of heavy metals in sewage sludge

Study Area and Sampling
Physicochemical Analysis
Determination of Total Heavy Metal Concentrations
Sequential Extraction of Heavy Metals in Sewage Sludge
BCR Procedure
Pollution Level and Ecological Risk
Statistical Analysis
Physicochemical Characteristics of Sewage Sludge
Total Heavy Metal Concentrations
Chemical Speciation of Heavy Metals
Assessment of Polluton Level and Ecological Risk
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.