Abstract

Intense urbanization, large scale industrialization and unprecedented population growth in the last few decades have been responsible for lowering environmental quality. Soil contamination with metals is a serious concern due to their toxicity and ability to accumulate in the biota. The present work assessed the heavy metal contamination of agricultural soil in the close vicinity of the Dhaka Export Processing Zone (DEPZ) in both dry and wet seasons using different indices viz., index of geoaccumulation (Igeo), contamination factor ( ), degree of contamination ( ), modified degree of contamination (mCd) and pollution load index (PLI). Samples were collected from the surface layer of soil and analyzed by Atomic Absorption Spectrophotometer (AAS). The trend of metals according to average concentration during the dry and wet seasons was As > Fe > Hg > Mn > Zn > Cu > Cr > Ni > Pb > Cd and As > Fe > Mn > Zn > Hg > Cu > Ni > Cr > Pb > Cd, respectively. Because of seasonal rainfall, dilution and other run-off during the wet season, metals from the upper layer of soil were flushed out to some extent and hence all the indices values were lower in this season compared to that of the dry season. Igeo results revealed that the study area was strongly and moderately contaminated with As and Hg in the dry and wet seasons respectively. According to , soil was classified as moderately contaminated with Zn, Cr, Pb and Ni, considerably contaminated with Cu and highly contaminated with As and Hg. The general trend of the mean was Hg > As > Cu > Zn > Ni > Cr > Pb > Fe > Mn > Cd and As > Hg > Cu > Cd > Zn > Ni >Pb > Fe > Mn in dry and wet seasons, respectively. The mCf values in the dry and wet seasons were 575.13 and 244.44 respectively indicating an ultra high degree of contamination. The Cd values in both seasons were associated with a very high degree of contamination. PLI results indicated immediate intervention to ameliorate pollution in both seasons. The main sources of metals included effluents from wastewater treatment plants, treated and untreated wastewater from surrounding industrial establishments as well as agricultural activities. Protecting the agricultural soil is a formidable challenge in the study area, which requires modernization of industries, thereby improving the recovery and recycling of wastewater. Indices analysis presented in the present work could serve as a landmark for contemporary research in toxicology.

Highlights

  • The role of heavy and trace elements in the soil system is increasingly becoming an issue of global concern at private as well as governmental levels, especially as soil constitutes a crucial component of rural and urban environments [1], and can be considered as a very important “ecological crossroad” in the landscape [2]

  • Some trace elements are essential in plant nutrition, plants growing in the close vicinity of industrial areas display increased concentration of heavy metals, serving in many cases as biomonitors of pollution loads [3]

  • Agricultural products growing on soils with high metal concentrations are represented by metal accumulations at levels harmful to human and animal health as well as to the bio-environment

Read more

Summary

Introduction

The role of heavy and trace elements in the soil system is increasingly becoming an issue of global concern at private as well as governmental levels, especially as soil constitutes a crucial component of rural and urban environments [1], and can be considered as a very important “ecological crossroad” in the landscape [2]. Agricultural soil contamination with heavy metals through the repeated use of untreated or poorly treated wastewater from industrial establishments and application of chemical fertilizers and pesticides is one of the most severe ecological problems in Bangladesh. Toxic metals are known to have serious health implications, including carcinogenesis induced tumor promotion, and the growing consciousness about the health risks associated with environmental chemicals has brought a major shift in global concern towards prevention of heavy metal accumulation in soil, water and vegetables [7,8]. Long-term use of industrial or municipal wastewater in irrigation is known to have a significant contribution to the content of trace and heavy elements such as Cd, Cu, Zn, Cr, Ni, Pb, and Mn in surface soil [12]. Excessive accumulation of trace elements in agricultural soils through wastewater irrigation may result in soil contamination and affect food quality and safety [14,15,16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call