Abstract
Tissue velocity and attenuation inhomogeneities reduce ultrasound image quality in many patients. Over the years a number of methods have been developed to estimate the corrective delays necessary for phase aberration correction. Past methods were based on assumptions of the target or required a separate transducer acting as a transponder point source. A method is proposed which creates a known acoustical source in the tissue suitable for wavefront correction without a priori assumptions of the target or requiring a point source transponder. This method was tested with multiple electronically produced aberrations with RMS focusing errors of 0.25π radians, 0.44π radians, and 0.87π radians at 4.17 MHz. These aberrators were corrected using excised pork kidneys and on the left kidney of human volunteers as targets. Waveform correction on pork kidney led to an improvement in imaging beam amplitude and side-lobe level. Waveform correction on human subjects for a 0.87π radians RMS error aberrator led to a 15.4 dB improvement in imaging beam amplitude and an 11.8 dB improvement in side-lobe level. This method shows promise of overcoming the limitations of previous phase correction methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.