Abstract

Habitat selection is one of the fundamental concepts in ecology and means that each organism should choose the habitat that will maximize its success. Invaders may be an underestimated object in research on habitat selection. Invasive plants experience enormous propagule pressure and bear the costs of spreading in disturbed anthropogenic habitats. It means that they do not necessarily achieve maximum invasiveness traits in such habitats, which they selected to colonize. This study aimed to assess habitats where invaders are likely to occur from the set of all available ones in the landscape and the habitats with the best performed traits of invaders. The research was conducted on 52 and 112 plots in 2019 and 2021, respectively, in South-Eastern Poland, and the invasive plants were Caucasian hogweeds Heracleum sp. In the first year, the circle plots had a 50 m radius and were to measure habitat areas and traits of hogweeds (height, number of individuals in the plot, cover, and number of flowering specimens). Detrimental correspondence analysis and linear mixed model investigated that hogweeds achieved the best performance reflected by traits in continuous habitats—meadows and forests. In the second year, the plots to measure habitats had a 100 m radius. The reference plots were far from the invasion exposure, and the paired control vs. Heracleum ones had the same habitats with the potential to be invaded. The generalized linear mixed model showed that the probability of the hogweeds occurrence was higher when the habitat was overgrowing with a simultaneous decrease in open areas and in the increasing ruderal area with a decrease in bushes. The impact of the invader’s habitat on the invasion performance depended on the purpose of habitat selection. When invaders spread and increased invasive extent or appeared in habitat edges, they did not reach the highest traits, the best performing in continuous habitats. The specificity of habitat selection of invaders is another aspect that distinguishes invasion science from classic ecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.