Abstract

Pollution vulnerability of the Owerri regional water supply aquifer was evaluated as a basis for developing appropriate protection strategy for the groundwater resource. The assessment was accomplished using Legrand, GOD, Siga and DRASTIC models. Techniques of the models generally involved parameters rating and point count systems, which are based on the evaluation of various parameter in relation to their capacity for enhancing or attenuating contaminants in the groundwater system. Field and laboratory evaluations of the parameters indicate that the Owerri area generally occupies a nearly, flat topography with a relatively high groundwater recharge. The area is underlain by predominantly sandy facies in the Northern area which grades into gravelly sequences towards the southwest. The Southeastern area is distinguished by thick clayey facies that thin westwards towards the Owerri metropolis. Effective hydraulic conductivity (Kz) in the downward direction ranges from 1.44 x 10(-3) to 5.6 x 10(-9) m s(-1); with the upper limits reflecting coarse sands and gravelly units. The amount of clay and clay-size particles in the sandy and gravelly units is negligible, suggesting that the sorptive capacity of the units is low. Depth to water table decreases southwards while hydraulic head gradients vary between 0.09 and 0.22. Groundwater occurs in unconfined conditions in most places except in the southeastern zone where it is semi-confined due to the presence of a clayey unit. The groundwater vulnerability map developed on the basis of the models and several other thematic maps shows that the Owerri metropolis and the southwest area of Owerri have high vulnerability, indicating groundwater pollution. The existing waste disposal sites in these sub-areas should be abandoned and rehabilitated to forstall further pollution of the groundwater system. Areas to the North and Southeast of Owerri have moderate and low vulnerabilities, respectively, indicating the relatively lower sensitivity of the groundwater system in the sub-areas to contamination. The lower sensitivity could further be matched with properly engineered sanitary landfills in the event of choice of sites, as an additional protective strategy for the groundwater system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call