Abstract

Creep feed grinding is a high-productivity abrasive removal process that is often limited by thermal damage and high wheel wear. A review of current industrial practices in the area of fluid supply optimisation in grinding shows that very little knowledge of the pressure, flowrate and method of application exists in industry. This paper presents an experimental procedure to evaluate fluid supply conditions in grinding on a continuous-dress creep feed grinder. Using tapered workpieces, the authors have evaluated the influence of wheel speed and material removal rate on grinding fluid effectiveness, based on the material removal rate at the position of the wheel along the ramp when burn starts to occur and the corresponding spindle power surge. Correlations are investigated between visible discoloration, metallurgical examinations and change in spindle power, in order to establish the onset of grinding burn. This procedure serves to determine the upper limit of material removal rate or - respectively - the lower limit of fluid flow rate for given grinding systems consisting of specified wheel type, material type, fluid type and fluid supply nozzle. The advantage of the presented method is its easy and time saving application in industry, but it is also of help to researchers who need to optimise fluid supply conditions prior to their grinding tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call