Abstract

AbstractTransfer functions are calculated for periods between 2 and 1,000 min between geomagnetically induced currents (GIC) measured at three transformers in the South Island of New Zealand and variations in the horizontal components of the geomagnetic field measured at the Eyrewell Observatory near Christchurch. Using an inverse Fourier transform, the transfer functions allow the GIC expected in these transformers to be estimated for any variation of the inducing magnetic field. Comparison of the predicted GIC with measured GIC for individual geomagnetic storms shows remarkable agreement, although the lack of high‐frequency measurements of GIC and the need for interpolation of the measurements lead to a degree of underestimation of the peak GIC magnitude. An approximate correction for this is suggested. Calculation of the GIC for a magnetic storm in November 2001 that led to the failure of a transformer in Dunedin suggests that peak GIC were as large as about 80 A. Use of spectral scaling to estimate the likely GIC associated with a geomagnetic storm of the magnitude of the 1859 Carrington Event indicates that GIC of at least 10 times this magnitude may occur at some locations. Although the impact of changes to the transmission network on calculated transfer functions remains to be explored, it is suggested that the use of this technique may provide a useful check on estimates of GIC produced by other methods such as thin sheet modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.