Abstract

The present work aims to dissect the underlying signaling pathways associated with soybean [Glycine max (L.) Merrill] seed hormo-priming with ethephon (Eth). Our results demonstrated that soybean germination improved significantly upon Eth priming (Ethp). Phytohormone quantification shows relative enhanced endogenous gibberellin A4 (GA4) levels concomitant with impaired biogenesis and signaling of auxin, viz., indole acetic acid (IAA) and abscisic acid (ABA). Phytochemical analysis revealed relative reduced levels of individual and total raffinose family oligosaccharide (RFO) components, starch, soluble sugars, and sucrose concomitant with enhanced levels of reducing sugars, glucose, cellular ATP, and acetyl-CoA pools. Secondary metabolite analysis revealed the activation of the mevalonate (MVA) pathway with a concomitant suppression of the plastidal 2-methyl-d-erythritol-4-phosphate/1-deoxy-d-xylulose-5-phosphate (MEP/DOX) and phenylpropanoid pathways, substantiated by relative reduced levels of total phenolics, tannins, and proanthocyanidin. Ethp also enhances the in vitro antioxidative activity (viz., 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability and ferric reducing antioxidant power (FRAP)) and endogenous antioxidants levels (viz., flavonoids, isoflavones, β-carotene, vitamin C, and vitamin E). Further quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed transcriptional pattern of representative genes in agreement with these metabolic alterations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call