Abstract

Purpose: We examined genotoxicity, co-genotoxicity and induced genomic instability (IGI) in primary astrocytes exposed to radiofrequency (RF) radiation.Materials and methods: Rat primary astrocytes were exposed to 872 MHz GSM-modulated or continuous wave (CW) RF radiation at specific absorption rates of 0.6 or 6.0 W/kg for 24 h. Menadione (MQ) and methyl methanesulfonate (MMS; only in genotoxicity experiments) were used as co-exposures. Alkaline Comet assay and flow cytometric micronucleus scoring were used to detect genetic damage.Results: No IGI was observed from RF radiation alone or combined treatment with MQ. RF radiation alone was not genotoxic. RF radiation combined with chemical exposure showed some statistically significant differences: increased DNA damage at 6.0 W/kg but decreased DNA damage at 0.6 W/kg in cells exposed to GSM-modulated RF radiation and MQ, and increased micronucleus frequency in cells exposed to CW RF radiation at 0.6 W/kg and MMS.Conclusions: Exposure to GSM modulated RF radiation at levels up to 6.0 W/kg did not induce or enhance genomic instability in rat primary astrocytes. Lack of genotoxicity from RF radiation alone was convincingly shown in multiple experiments. Co-genotoxicity of RF radiation and genotoxic chemicals was not consistently supported by the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call