Abstract

AbstractThe first successful production of a sterile interspecific hybrid obtained from a cross between Cucumis hystrix Chakr. (2n = 2x = 24) and Cucumis sativus var. sativus L. (2n =2x = 14), and its subsequent fertility restoration through chromosome doubling provide an effective means for investigating genetic relationships among Cucumis spp. In this study, random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were used to investigate relationships among C. s. var. sativus L., C. s. var. hardwickii (R.) Alef., C hystrix, C. hytivus Chen & Kirkbride (the amphidiploid species from chromosome doubling of the C. sativus x C. hystrix interspecific hybrid, 2n = 38), C. melo (2n =2x = 24) and C. metuliferus Meyer and Naudin (2n =2x= 24). A total of 109 SSR bands and 398 RAPD primed sites were used to calculate Jaccard's distance coefficients for cluster analysis using a unweighted pair‐group method using an arithmetic averaging (UPGMA) algorithm. The genetic relationships identified using SSR and RAPDmarkers were highly concordant, such that the correlation between SSR and RAPDgenetic distance (GD) estimates was r = 0.94. SSR and RAPDanalysis of 22 accessions allowed for their grouping into two distinct groups designated as CS and CM. While group CS consisted of 11 C. sativus genotypes, and the C. hytivus and C. hystrix accessions, group CM included six C. melo genotypes and C. metuliferus. The GD values between C. hystrix and C. sativus ascribed by SSR and RAPD matrices were 0.59 and 0.57, respectively. These GDs were smaller than those detected between C. hystrix and C melo (0.87 and 0.70 derived from SSR and RAPD markers, respectively).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call