Abstract

BackgroundField pea (Pisum sativum L.) is among the prominent crops in the world as food and feed. There are relatively few simple sequence repeat (SSR) markers developed from expressed sequence tags (ESTs) in P. sativum.ResultsIn the present study, 15 new EST-SSR markers were developed from publicly available ESTs. These markers have successfully amplified their target loci across seven Pisum sativum subsp. sativum accessions. Eleven (73 %) of these SSRs were trinucleotide repeats, two (13 %) dinucleotide and two (13 %) were hexanucleotide repeats. Across-taxa transferability of these new markers was also tested on other subspecies of Pisum as well as on P. fulvum, Vicia faba and Lens culinaris. In Pisum sativum subsp. sativum, 13 of the 15 markers were polymorphic and 12 of them subsequently used for genetic diversity analysis. Forty six accessions, of which 43 were from Ethiopia, were subjected to genetic diversity analysis using these newly developed markers. All accessions were represented by 12 individuals except two (NGB103816 and 237508) that were represented by 9 and 11 individuals, respectively. A total of 37 alleles were detected across all accessions. PS10 was the most polymorphic locus with six alleles, and the average number of alleles per locus over the 12 polymorphic loci was 3.1. Several rare and private alleles were also revealed. The most distinct accession (32048) had private alleles at three loci with 100 % frequency.ConclusionThese newly developed EST-SSR primer-pairs successfully amplified expected loci in P. sativum subsp. sativum as well as in other subspecies of the genus Pisum and related genera. High levels of genetic variation were detected in field pea accessions from Ethiopia using these markers. This result implies the potential of the Ethiopian field pea gene pool for improvement of field peas in various desirable traits. In addition, these markers could be a valuable asset in resolving the inconsistency in the taxonomic status of the different subspecies of genus Pisum as well as for characterization of field pea accessions in different gene banks around the world for breeding and conservation purposes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-015-0261-5) contains supplementary material, which is available to authorized users.

Highlights

  • Field pea (Pisum sativum L.) is among the prominent crops in the world as food and feed

  • The list of 15 new Expressed sequence tags (EST)-simple sequence repeat (SSR) loci developed in this study is given in Table 1 along with their source sequence accession numbers, primer-pairs, repeat motifs and fragment size range

  • Two of the 15 loci (PS09 and PS20) were monomorphic whereas the remaining 13 loci were polymorphic across the seven P. sativum subsp. sativum accessions initially tested (Table 2)

Read more

Summary

Introduction

Field pea (Pisum sativum L.) is among the prominent crops in the world as food and feed. There are relatively few simple sequence repeat (SSR) markers developed from expressed sequence tags (ESTs) in P. sativum. Field pea (Pisum sativum L.) is one of the ancient and prominent crops. Field pea is an important source of food in developing countries and a major feed in the developed world. Ethiopia holds the number one spot in Africa and sixth in the world in field pea production [3]. Teshome et al BMC Genetics (2015) 16:102 which constitute a valuable resource in field pea breeding. Only few of these accessions have been properly characterized for their genetic diversity and/or agronomic traits [4,5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call