Abstract
This study was carried out to assess the genetic diversity and to analyze the population genetic structure for a total of 692 mungbean accessions preserved at National Agrobiodiversity Center (NAC) of the Rural Development Administration (RDA), Korea. Mungbean accessions were collected from 27 countries in nine different geographic regions, and were genotyped using 15 microsatellite markers, which were developed in our previous study. A total of 66 alleles were detected among 692 accessions at all the loci with an average of 4.4 alleles per locus. All the microsatellite loci were found to be polymorphic. The expected heterozygosity (H E ) and polymorphism information content (PIC) ranged from 0.081 to 0.588 (mean = 0.345) and from 0.080 to 0.544 (mean = 0.295), respectively. Of the 66 alleles, 17 (25.8%) were common (frequency range between 0.05 and 0.5), 15 (22.7%) were abundant (frequency range > 0.5), and 34 (51.5%) were rare (frequency range < 0.05). Locus GB-VR-7 provided the highest number of rare alleles(eight), followed by GB-VR-91(six) and GB-VR-113(four). Country-wide comparative study on genetic diversity showed that accessions from the USA possessed the highest genetic diversity (PIC) followed by Nepal, Iran, and Afghanistan. And region-wide showed that accessions from Europe possessed the highest average genetic diversity, followed by accessions from the USA, South Asia, West Asia, and Oceania. Twenty-seven countries were grouped into seven clades by phylogenetic relationship analysis, but clustering pattern did not strictly follow their geographical origin because of extensive germplasm exchange between/among countries and regions. As a result of a model-based analysis (STRUCTURE) of microsatellite data, two distinct genetic groups were identified which shared more than 75% membership with one of the two genetic groups. However the genetic group pattern did not reflect their geographical origin. The Duncan’s Multiple Range Test among these two genetic groups and an admixed group, with a mean of 16 phenotypic traits, showed significant difference in 12 quantitative and qualitative traits on the basis of ANOVA. These 15 newly developed SSR markers proved to be useful as DNA markers to detect genetic variation in mungbean germplasm for reasonable management and crossbreeding purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.