Abstract
Background:Compared to past decades, humans are exposed to rapidly increasing levels of radiofrequency electromagnetic radiations (RF-EMF). Despite numerous studies, the biological effects of human exposure to different levels of RF-EMF are not fully understood yet. This study aimed to evaluate the bioeffects of exposure to "900/1800 MHz" and “2.4 GHz" RF-EMFs, and x-rays alone as well as their potential interactions, i.e. inducing simple additive, adaptive, or synergistic effects.Methods:120 Wistar rats were randomly divided into ten groups of 12 each. The rats were exposed to RF-EMF, 10 cGy, and 8 Gy x-rays, a combination of these exposures, or only sham-exposed. The levels of liver enzymes were determined in serum samples by an auto-analyzer. Moreover, the histopathological changes, and the levels of malondialdehyde (MDA), nitric oxide, ferric reducing antioxidant power, total thiols, and protein carbonyl (PCO) were measured.Results:Among the markers of liver function, gamma-glutamyltransferase was not associated with irradiation but, aspartate transaminase, alanine transaminase, and alkaline phosphatase showed some levels of association. MDA and PCO levels after 8 Gy irradiation increased, but pre-exposure to RF-EMF could modulate their changes. At the cellular level, the frequency of lobular inflammation was associated with the type of intervention.Conclusion:The exposure to both ionizing and non-ionizing radiations could alter some liver function tests. A short term pre-exposure to RF-EMF before exposure to an 8 Gy challenging dose of x-rays caused the alterations in oxidative stress markers and liver function tests, which indicate that oxidative stress is possibly involved in the adaptive response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.