Abstract

Spring clips type Vossloh SKL14 (fastening system of track) are vulnerable to fatigue damage in lifetime due to excitations caused by traffic loads. This article has tried to develop a method for reliability analysis of spring clips type SKL14, based on fracture mechanics approach. First of all, a linear dynamic analysis of track has been done for dynamic response calculations under various traffic loads. The displacement time histories are applied on finite element method of type Vossloh SKL14 to achieve cyclic stresses. The equivalent stress range is described by lognormal distribution. Then, fracture reliability analysis has been done for crack propagation assessment in spring clip based on Paris’s law. This fatigue crack growth is dominated by a Mode I mechanism. A linear limit state function based on fracture mechanics is derived in terms of random variables. First-order reliability method has been employed for reliability estimation. At the end, the influence of various random variables on overall probability of failure has been studied through sensitivity analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.